Fractional Laplace model for hydraulic conductivity
نویسندگان
چکیده
منابع مشابه
Fractional Laplace Model for Hydraulic Conductivity
Based on an examination of K data from four different sites, a new stochastic fractal model, fractional Laplace motion, is proposed. This model is based on the assumption of spatially stationary ln(K) increments governed by the Laplace PDF, with the increments named fractional Laplace noise. Similar behavior has been reported for other increment processes (often called fluctuations) in the fiel...
متن کاملFractional Laplace Motion
Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional dist...
متن کاملEffective Unsaturated Hydraulic Conductivity
Steady-state and transient one-dimensional unsaturated flow in vertically stratified porous media are examined. Saturated hydraulic conductivity and the alpha parameter of the exponential hydraulic conductivity function were assumed to vary from soil layer to soil layer. The use of effective unsaturated hydraulic conductivity to compute matric potential in the soil profile is demonstrated. Resu...
متن کاملThe hydraulic conductivity of MatrigelTM
In this study, we measured the specific hydraulic conductivity (K) of MatrigelTM at 1% and 2% concentrations as a function of perfusion pressure (0 to 100 mmHg) and compared the results to predictions from two models: a fiber matrix model that predicted K of the gel based upon its composition, and a biphasic model that predicted changes in K caused by pressure induced compaction of the gels. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Research Letters
سال: 2004
ISSN: 0094-8276
DOI: 10.1029/2003gl019320